
मार्यम में बल उद्या निर्वात में लगते वाले बल VIDYAKUL The relation between force in medium to the force in vacuum.

$$9, \frac{7}{92}$$
 $F_{m} = \frac{1}{4\pi \xi_{m}} \frac{9!92}{972}$
 $F_{m} = \frac{1}{4\pi \xi_{n}} \frac{9!92}{972}$
 $F_{m} = \frac{1}{4\pi \xi_{n}} \frac{9!92}{972}$
 $F_{m} = \frac{1}{4\pi \xi_{n}} \frac{9!92}{972}$
 $F_{m} = \frac{1}{\xi_{n}} \frac{9!92}{4\pi \xi_{n}}$

2. If charged particles of charge 8μC and 10μC are placed in a oil of relative Permittivity 5 at 30cm. Find the force

यदि दो आवेशित कण जिनका आवेश क्रमशः $8\mu C$ तथा $10\mu C$ है एक ऐसे तेल में रखा हुआ है जिसका सापेक्षिक विधुतशीलता 5 है और कणों के बीच की दूरी 30cm है तो बल ज्ञात करें।

$$F_{n} = \frac{F_{n}}{F_{n}}$$

$$F_{n} = \frac{F_{n}}$$

3. If force between two charged particles in vacuum is 600N and in a medium force becomes 100N find the Permittivity of medium.

यदि निर्वात में दो आवेशित कणों के बीच लगने वाला बल 600N हैं और माध्यम में यह घटकर 100N हो जाता है तो माध्यम की विधुतशीलता ज्ञात करें।

Vector form of Coulomb's law कूलाम के नियम का सदिश रूप

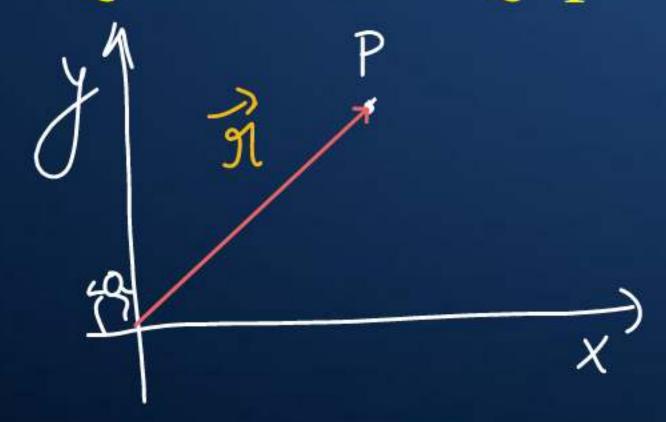
Unit vector इकाई सदिश – The vector whose magnitude is unity and it has a fixed direction is called unit vector.

ऐसा सदिश जिसका परिमाण इकाई हो तथा जिसके पास एक निश्चित दिशा हो उसे इकाई

सदिश कहते हैं

$$A=10M$$

Anit Vector of $A=A$



Position vector स्थिति सदिश

The vector which represent the position of a point by using magnitude and direction is called position vector.

ऐसा सदिश जो किसी बिंदु कि स्थिति को परिमाण तथा दिशा की सहायता से दर्शाता हो उसे स्थिति सदिश कहते हैं।

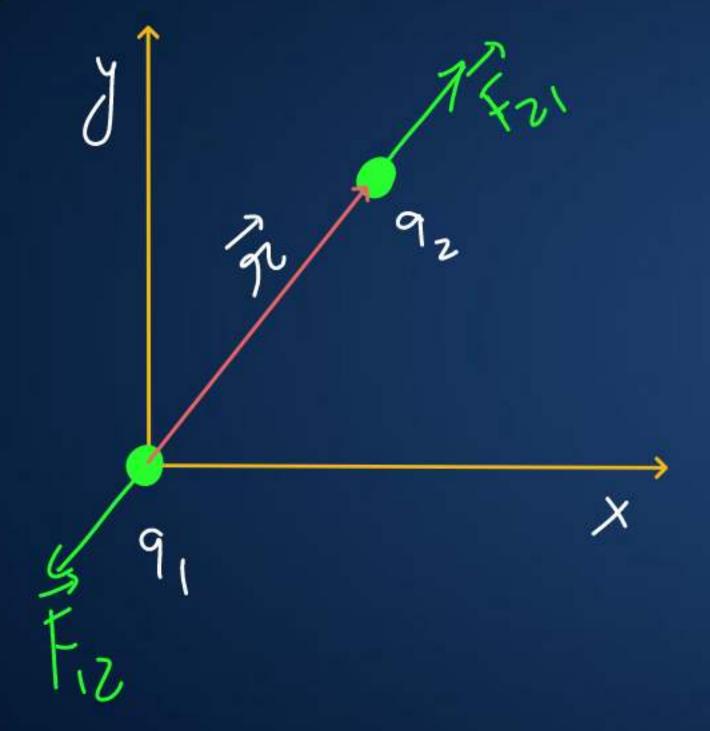
Position vector of point 'p' with respect to origin. यहाँ र मूल बिंदु के सापेक्ष में बिंदु 'p' का स्थिति सदिश है।

कुलोंब के नियम का सिंदिश राष्

VECTOR FORM OF COULOMB'S LAW

Vector form of Coulomb's law gives information about magnitude & direction of electrostatic force

Coulomb के नियम का सदिश रूप, स्थिर वैधुत बल के दिशा तथा परिमाण दोनों कि जानकारी देता हैं।


Consider two charged particles of charge $q_1 \& q_2$ are in the system where the particle of charge q_1 placed at origin and particle of charge q_2 is placed at a point whose position vector is r with respect to origin

माना कि दो आवेशित कण जिनके आवेश क्रमशः q_1 तथा q_2 हैं। जहाँ q_1 आवेश वाला कण मूल बिन्दु पर स्थित है तथा q_2 आवेश वाला कण एक ऐसे बिंदु पर है जिसका स्थिति सदिश मूल बिंदु के सापेक्ष r

Force exerted by q₁ on q₂ is F₂₁

 ${\bf q_1}$ आवेश वाले कण के द्वारा ${\bf q_2}$ आवेश वाले कण पर लगने वाला बल ${\bf F_{21}}$ है।

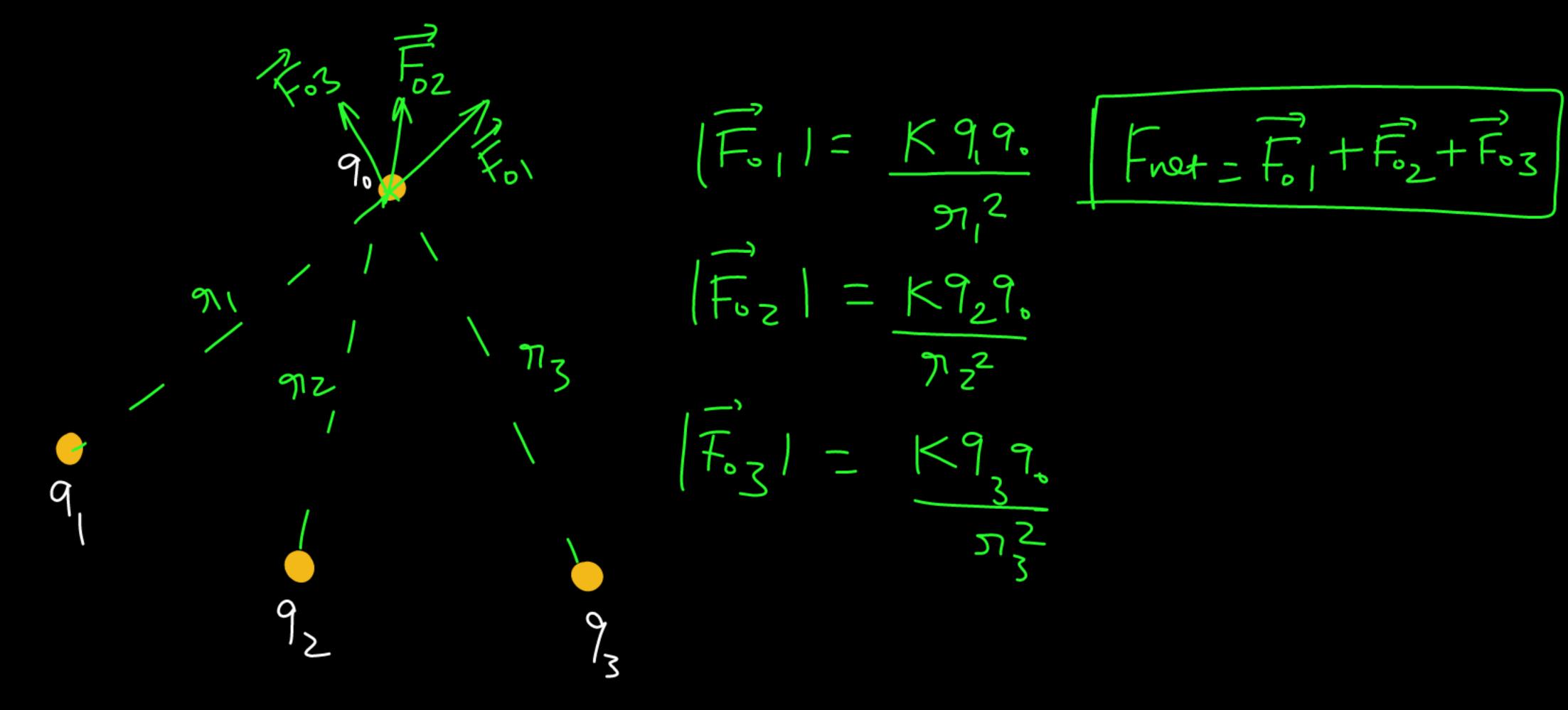
$$F_{21} = K_{9,92}$$
 $F_{21} = K_{9,92}$
 $F_{22} = K_{9,92}$
 $F_{21} = K_{9,92}$
 $F_{22} = K_{9,92}$
 $F_{21} = K_{9,92}$
 $F_{21} = K_{9,92}$
 $F_{22} = K_{9,92}$
 F_{2

SUPERPOSITION THEOREM

FORCE ON A CHARGED PARTICLE

SUPERPOSITION THEOREM 3 EUT THU OF THE VIDYAKUL

If there are number of charged particles present in the system then, to find the net force on any one particle we use superposition theorem.


यदि किसी निकाय में दो या दो से अधिक आवेशित कण मौजूद हो तो किसी एक कण पर लगने वाले कुल बल का मान ज्ञात करने के लिए अध्यारोपण के सिद्धांत का उपयोग करते हैं।

STATEMENT 1:- If number of charged particles present in the system then every charged particle apply force on each other individually & independently.

यदि किसी निकाय में बहुत सारे आवेशित कण मौजूद हो तो सभी कण एक दूसरे पर स्वंतत्र रूप से बल लगाते हैं।

STATEMENT 2:- Net force applied on any charged particle is equal to the vector sum of all the force applied on it by individual charges.

किसी एक आवेशित कण पर लगने वाला कुल बल उस पर सभी कणों के द्वारा लगाए बलों के सदिश योग के बराबर होगा।

